Применение метода наименьших квадратов в Excel

Применение метода наименьших квадратов в Excel

Метод наименьших квадратов представляет собой математическую процедуру построения линейного уравнения, которое бы наиболее точно соответствовало набору двух рядов чисел. Целью применения данного способа является минимизация общей квадратичной ошибки. В программе Excel имеются инструменты, с помощью которых можно применять данный метод при вычислениях. Давайте разберемся, как это делается.

Использование метода в Экселе

Метод наименьших квадратов (МНК) является математическим описанием зависимости одной переменной от второй. Его можно использовать при прогнозировании.

Включение надстройки «Поиск решения»

Для того, чтобы использовать МНК в Экселе, нужно включить надстройку «Поиск решения», которая по умолчанию отключена.

  1. Переходим во вкладку «Файл».

Кликаем по наименованию раздела «Параметры».

В открывшемся окне останавливаем выбор на подразделе «Надстройки».

  • Открывается небольшое окошко. Ставим в нём галочку около параметра «Поиск решения». Жмем на кнопку «OK».
  • Теперь функция Поиск решения в Excel активирована, а её инструменты появились на ленте.

    Условия задачи

    Опишем применение МНК на конкретном примере. Имеем два ряда чисел x и y, последовательность которых представлена на изображении ниже.

    Наиболее точно данную зависимость может описать функция:

    При этом, известно что при x=0 y тоже равно . Поэтому данное уравнение можно описать зависимостью y=nx.

    Нам предстоит найти минимальную сумму квадратов разности.

    Решение

    Перейдем к описанию непосредственного применения метода.

      Слева от первого значения x ставим цифру 1. Это будет приближенная величина первого значения коэффициента n.

    Справа от столбца y добавляем ещё одну колонку – nx. В первую ячейку данного столбца записываем формулу умножения коэффициента n на ячейку первой переменной x. При этом, ссылку на поле с коэффициентом делаем абсолютной, так как это значение меняться не будет. Кликаем по кнопке Enter.

    Используя маркер заполнения, копируем данную формулу на весь диапазон таблицы в столбце ниже.

    В отдельной ячейке высчитываем сумму разностей квадратов значений y и nx. Для этого кликаем по кнопке «Вставить функцию».

    В открывшемся «Мастере функций» ищем запись «СУММКВРАЗН». Выбираем её и жмем на кнопку «OK».

    Открывается окно аргументов. В поле «Массив_x» вводим диапазон ячеек столбца y. В поле «Массив_y» вводим диапазон ячеек столбца nx. Для того, чтобы ввести значения, просто устанавливаем курсор в поле и выделяем соответствующий диапазон на листе. После ввода жмем на кнопку «OK».

    Переходим во вкладку «Данные». На ленте в блоке инструментов «Анализ» жмем на кнопку «Поиск решения».

    Открывается окно параметров данного инструмента. В поле «Оптимизировать целевую функцию» указываем адрес ячейки с формулой «СУММКВРАЗН». В параметре «До» обязательно выставляем переключатель в позицию «Минимум». В поле «Изменяя ячейки» указываем адрес со значением коэффициента n. Жмем на кнопку «Найти решение».

  • Решение будет отображаться в ячейке коэффициента n. Именно это значение будет являться наименьшим квадратом функции. Если результат удовлетворяет пользователя, то следует нажать на кнопку «OK» в дополнительном окне.
  • Как видим, применение метода наименьших квадратов довольно сложная математическая процедура. Мы показали её в действии на простейшем примере, а существуют гораздо более сложные случаи. Впрочем, инструментарий Microsoft Excel призван максимально упростить производимые вычисления.

    Exceltip

    Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

    Метод наименьших квадратов в Excel — использование функции ТЕНДЕНЦИЯ

    Метод наименьших квадратов — это математическая процедура составления линейного уравнения, максимально соответствующего набору упорядоченных пар, путем нахождения значений для a и b, коэффициентов в уравнении прямой. Цель метода наименьших квадратов состоит в минимизации общей квадратичной ошибки между значениями y и ŷ. Если для каждой точки мы определяем ошибку ŷ, метод наименьших квадратов минимизирует:

    где n = число упорядоченных пар вокруг линии. максимально соответствующей данным.

    Это понятие проиллюстрировано на рисунке

    Судя по рисунку, линия, максимально соответствующая данным, линия регрессии, минимизирует общую квадратичную ошибку четырех точек на графике. Я покажу вам, как определять это уравнение регрессии с помощью метода наименьших квадратов на следующем примере.

    Представьте себе молодую пару, которые, с недавних пор, живут вместе и совместно делят столик для косметических принадлежностей в ванной. Молодой человек начал замечать, что половина его столика неумолимо сокращается, сдавая свои позиции муссам для волос и соевым комплексам. За последние несколько месяцев парень внимательно следил за тем, с какой скоростью увеличивается число предметов на ее части стола. В таблице ниже представлено число предметов девушки на столике в ванной, накопившихся за последние несколько месяцев.

    Поскольку своей целью мы определили задачу узнать, увеличивается ли со временем число предметов, «Месяц» будет независимой переменной, а «Число предметов» — зависимой.

    С помощью метода наименьших квадратов определяем уравнение, максимально соответствующее данным, путем вычисления значений a, отрезка на оси y, и b, наклона линии:

    где xср — среднее значение x, независимой переменной, yср — среднее значение y, независимой переменной.

    В таблице ниже суммированы необходимые для этих уравнений вычисления.

    Кривая эффекта для нашего примера с ванной будет определяться следующим уравнением:

    Поскольку наше уравнение имеет положительный наклон — 0.976, парень имеет доказательство того, что число предметов на столике со временем увеличивается со средней скоростью 1 предмет в месяц. На графике представлена кривая эффекта с упорядоченными парами.

    Ожидание в отношении числа предметов в течение следующего полугода (месяца 16) будет вычисляться так:

    ŷ = 5.13 + 0.976x = 5.13 + 0.976(16)

    20.7 = 21 предмет

    Так что, пора нашему герою предпринимать какие-нибудь действия.

    Функция ТЕНДЕНЦИЯ в Excel

    Как вы уже, наверное, догадались в Excel имеется функция для расчета значения по методу наименьших квадратов. Это функция называется ТЕНДЕНЦИЯ. Синтаксис у нее следующий:

    ТЕНДЕНЦИЯ (известные значения Y; известные значения X; новые значения X; конст)

    известные значения Y – массив зависимых переменных, в нашем случае, количество предметов на столике

    известные значения X – массив независимых переменных, в нашем случае это месяц

    новые значения X – новые значения X (месяца) для которого функция ТЕНДЕНЦИЯ возвращает ожидаемое значение зависимых переменных (количество предметов)

    конст — необязательный. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

    Например, на рисунке показана функция ТЕНДЕНЦИЯ, используемая для определения ожидаемого количества предметов на столике в ванной для 16-го месяца.

    МНК: Метод Наименьших Квадратов в EXCEL

    Метод наименьших квадратов (МНК) основан на минимизации суммы квадратов отклонений выбранной функции от исследуемых данных. В этой статье аппроксимируем имеющиеся данные с помощью линейной функции y = a x + b .

    Метод наименьших квадратов (англ. Ordinary Least Squares , OLS ) является одним из базовых методов регрессионного анализа в части оценки неизвестных параметров регрессионных моделей по выборочным данным.

    Рассмотрим приближение функциями, зависящими только от одной переменной:

    Примечание : Случаи приближения полиномом с 3-й до 6-й степени рассмотрены в этой статье. Приближение тригонометрическим полиномом рассмотрено здесь.

    Линейная зависимость

    Нас интересует связь 2-х переменных х и y . Имеется предположение, что y зависит от х по линейному закону y = ax + b . Чтобы определить параметры этой взаимосвязи исследователь провел наблюдения: для каждого значения х i произведено измерение y i (см. файл примера ). Соответственно, пусть имеется 20 пар значений (х i ; y i ).

    Читайте также  Сложение времени в Microsoft Excel

    Для наглядности рекомендуется построить диаграмму рассеяния.

    Примечание: Если шаг изменения по х постоянен, то для построения диаграммы рассеяния можно использовать тип График , если нет, то необходимо использовать тип диаграммы Точечная .

    Из диаграммы очевидно, что связь между переменными близка к линейной. Чтобы понять какая из множества прямых линий наиболее «правильно» описывает зависимость между переменными, необходимо определить критерий, по которому будут сравниваться линии.

    В качестве такого критерия используем выражение:

    Вышеуказанное выражение представляет собой сумму квадратов расстояний между наблюденными значениями y i и ŷ i и часто обозначается как SSE ( Sum of Squared Errors ( Residuals ), сумма квадратов ошибок (остатков) ) .

    Метод наименьших квадратов заключается в подборе такой линии ŷ = ax + b , для которой вышеуказанное выражение принимает минимальное значение.

    Примечание: Любая линия в двухмерном пространстве однозначно определяется значениями 2-х параметров: a (наклон) и b (сдвиг).

    Считается, что чем меньше сумма квадратов расстояний, тем соответствующая линия лучше аппроксимирует имеющиеся данные и может быть в дальнейшем использована для прогнозирования значений y от переменной х. Понятно, что даже если в действительности никакой взаимосвязи между переменными нет или связь нелинейная, то МНК все равно подберет «наилучшую» линию. Таким образом, МНК ничего не говорит о наличии реальной взаимосвязи переменных, метод просто позволяет подобрать такие параметры функции a и b , для которых вышеуказанное выражение минимально.

    Проделав не очень сложные математические операции (подробнее см. статью про квадратичную зависимость ), можно вычислить параметры a и b :

    Как видно из формулы, параметр a представляет собой отношение ковариации и дисперсии , поэтому в MS EXCEL для вычисления параметра а можно использовать следующие формулы (см. файл примера лист Линейная ):

    = КОВАР(B26:B45;C26:C45)/ ДИСП.Г(B26:B45) или

    Также для вычисления параметра а можно использовать формулу = НАКЛОН(C26:C45;B26:B45) . Для параметра b используйте формулу = ОТРЕЗОК(C26:C45;B26:B45) .

    И наконец, функция ЛИНЕЙН() позволяет вычислить сразу оба параметра. Для ввода формулы ЛИНЕЙН(C26:C45;B26:B45) необходимо выделить в строке 2 ячейки и нажать CTRL + SHIFT + ENTER (см. статью про формулы массива, возвращающими несколько значений ). В левой ячейке будет возвращено значение а , в правой – b .

    Примечание : Чтобы не связываться с вводом формул массива потребуется дополнительно использовать функцию ИНДЕКС() . Формула = ИНДЕКС(ЛИНЕЙН(C26:C45;B26:B45);1) или просто = ЛИНЕЙН(C26:C45;B26:B45) вернет параметр, отвечающий за наклон линии, т.е. а . Формула = ИНДЕКС(ЛИНЕЙН(C26:C45;B26:B45);2) вернет параметр, отвечающий за пересечение линии с осью Y, т.е. b .

    Вычислив параметры, на диаграмме рассеяния можно построить соответствующую линию.

    Еще одним способом построения прямой линии по методу наименьших квадратов является инструмент диаграммы Линия тренда . Для этого выделите диаграмму, в меню выберите вкладку Макет , в группе Анализ нажмите Линия тренда , затем Линейное приближение .

    Поставив в диалоговом окне галочку в поле «показывать уравнение на диаграмме» можно убедиться, что найденные выше параметры совпадают со значениями на диаграмме.

    Примечание : Для того, чтобы параметры совпадали необходимо, чтобы тип у диаграммы был Точечная, а не График . Дело в том, что при построении диаграммы График значения по оси Х не могут быть заданы пользователем (пользователь может указать только подписи, которые не влияют на расположение точек). Вместо значений Х используется последовательность 1; 2; 3; … (для нумерации категорий). Поэтому, если строить линию тренда на диаграмме типа График , то вместо фактических значений Х будут использованы значения этой последовательности, что приведет к неверному результату (если, конечно, фактические значения Х не совпадают с последовательностью 1; 2; 3; …).

    Метод наименьших квадратов в Excel

    Программа Excel – мощный табличный редактор, позволяющий выполнять огромное количество различных операций и задач. В данной статье мы разберем, как можно применить метод наименьших квадратов (МНК), который используется для решения различных задач с минимизацией суммы квадратов отклонений некоторых функций от искомых переменных.

    Подготовительный этап: активируем надстройку “Поиск Решения”

    Прежде, чем приступить к решению основной задачи, потребуется активировать надстройку “Поиск решения” в программе.

    1. Идем в меню “Файл”.
    2. В перечне слева выбираем пункт “Параметры”.
    3. В правой части подраздела “Надстройки” выбираем для параметра “Управление” вариант “Надстройки Excel” и жмем “Перейти”.
    4. Появится окно для выбора нужных надстроек. Устанавливаем галочку напротив пункта “Поиск решения” и щелкаем OK.

    Этап 1: исходные данные

    Давайте разберем применение метода наименьших квадратов, решив конкретный пример. Допустим, у нас есть два ряда числовых значений – X и Y.

    Данная зависимость может быть описана уравнением ниже:

    Также, мы знаем, что если X=0, то и Y=0. А значит, данное уравнение можно записать так:

    Приступим к выполнению нашей задачи, которая заключается в нахождении суммы квадратов разности.

    Этап 2: решаем задачу с применением МНК

    1. Столбцу, находящемся слева от X, задаем имя N пишем число “1” (примерное значение первого коэф. N) напротив первого значения ряда X.
    2. Столбцу с правой стороны от Y задаем название NX. Затем в самой верхней ячейке (напротив первых значений рядов X и Y) пишем формулу произведения коэф. N на соответствующее ему значение из столбца X. При этом адрес ячейки с коэффициентом нужно сделать абсолютным, чтобы он не менялся при копировании формулы. По готовности жмем Enter.
    3. Наводим указатель мыши на ячейку с полученным результатом. Как только появится черный плюсик (маркер заполнения), зажав левую кнопку мыши тянем его вниз до последней строки таблицы.
    4. Получаем результаты расчетов в каждой ячейке столбца NX.
    5. Теперь нужно посчитать сумму разностей квадратов значений Y и NX. Встаем в самую верхнюю ячейку столбца справа от NX (не считая шапки таблицы) и щелкаем по значку “Вставить функцию” (fx).
    6. В окне вставки функции выбираем категорию “Математические”, находим оператор “СУММКВРАЗН” и щелкаем OK.
    7. Теперь нужно заполнить аргументы функции:
      • в поле “Массив_x” указываем координаты диапазона ячеек столбца Y (без шапки). Адреса ячеек можно указать как вручную, напечатав их с клавиатуры, так и путем выделения с помощью зажатой левой кнопки мыши в самой таблице.
      • в поле “Массив_y” указываем диапазон ячеек столбца NX.
      • жмем Enter, когда все готово.
    8. Переключаемся во вкладку “Данные”. В группе “Анализ” щелкаем по функции “Поиск решения”.
    9. Нам предстоит заполнить параметры поиска решения:
      • в поле “Оптимизировать целевую функцию” следует указать ссылку на ячейку с функцией “СУММКВРАЗН”. Сделать это можно вручную или выбрав элемент в таблице.
      • для опции “До” выбираем вариант – “Минимум”.
      • в поле “Изменяя ячейки переменных” нужно указать координаты ячейки, в которой находится соответствующее значение коэф. N.
      • по готовности нажимаем “Найти решение”.
    10. После выполнения функции появится окно с результатами поиска решения и произойдет замена значения в столбце N. Найденная величина является наименьшим квадратом функции. Нажимаем OK, если полученный результат удовлетворителен.

    Заключение

    Итак, мы только что разобрали на практическом примере, каким образом можно применить метод наименьших квадратов в Эксель. На практике могут встречаться более сложные задачи, однако, в целом логика действий схожа с той, что мы описали.

    Метод наименьших квадратов и поиск решения в Excel

    Ну вот, на работе перед инспекцией отчитались, статья дома для конференции написана — можно теперь и в блог писать. Пока данные свои обрабатывал, понял, что не могу не написать про очень классную и нужную надстройку в Excel, которая называется «поиск решения». Так что статья будет посвящена именно этой надстройке, и расскажу я о ней на примере использования метода наименьших квадратов (МНК) для поиска неизвестных коэффициентов уравнения при описании экспериментальных данных.

    Читайте также  Функция автозамены в Microsoft Excel

    Как включить надстройку «поиск решения»

    Для начала разберемся, как эту надстройку включить.

    1. Идем в меню «Файл» и выбираем пункт «Параметры Excel»

    2. В появившемся окне выбираем «Поиск решения» и нажимаем «перейти».

    3. В следующем окне ставим галочку напротив пункта «поиск решения» и нажимаем «ОК».

    4. Надстройка активирована — теперь ее можно найти в пункте меню «Данные».

    Метод наименьших квадратов

    Теперь вкратце о методе наименьших квадратов (МНК) и о том, где его можно применять.

    Допустим, у нас есть набор данных после совершения нами какого-то эксперимента, где мы изучали влияния величины Х на величину Y.

    Мы хотим это влияние описать математически, чтобы потом этой формулой пользоваться и знать, что, если мы поменяем величину Х на столько-то , получим величину Y такую-то.

    Возьму супер-простой пример (см. рис.).

    Ежу понятно, что точки расположились друг за другом как будто по прямой, а потому мы смело предполагаем, что наша зависимость описывается линейной функцией y=kx+b. При этом мы точно уверены, что при X равном нулю значение Y тоже равно нулю. Значит, функция, описывающая зависимость, будет еще проще: y=kx (вспоминаем школьную программу).

    В общем, нам предстоит найти коэффициент k. Вот это мы и сделаем с помощью МНК с применением надстройки «поиск решения».

    Метод заключается в том, чтобы (здесь — внимание: нужно вдуматься) сумма квадратов разностей экспериментально полученных и соответствующих расчетных значений была минимальной. То есть когда X1=1 реально измеренное значение Y1=4,6, а расчетное y1=f (x1) равно 4, квадрат разности будет (y1-Y1)^2=(4-4,6)^2=0,36. Со следующими так же: когда X2=2, реально измеренное значение Y2=8,1, а расчетное у2 равно 8, квадрат разности будет (y2-Y2)^2=(8-8,1)^2=0,01. И сумма всех этих квадратов должна быть минимально возможной.

    Итак, приступим к тренировке по использованию МНК и надстройки Excel «поиск решения».

    Применение надстройки поиск решения

    1. Если не включили надстройку «поиск решения», то возвращаемся к пункту Как включить надстройку «поиск решения» и включаем

    2. В ячейку А1 введем значение «1». Эта единица будет первым приближением к реальному значению коэффициента (k) нашей функциональной зависимости y=kx.

    3. В столбце B у нас расположились значения параметра X, в столбце C — значения параметра Y. В ячейках столбца D вводим формулу: «коэффициент k умножить на значение Х». Например, в ячейке D1 вводим «=A1*B1», в ячейке D2 вводим «=A1*B2» и т.д.

    4. Мы считаем, что коэффициент к равен единице и функция f (x)=у=1*х – это первое приближение к нашему решению. Можем рассчитать сумму квадратов разностей между измеренными значениями величины Y и рассчитанными по формуле y=1*х . Можем все это сделать вручную, вбивая в формулу соответствующие ссылки на ячейки: «=(D2-C2)^2+(D3-C3)^2+(D4-C4)^2. и т.д. В конце концов ошибаемся и понимаем, что потеряли кучу времени. В Excel для расчета суммы квадратов разностей есть специальная формула, «СУММКВРАЗН», которая все за нас и сделает. Введем ее в ячейку А2 и зададим исходные данные: диапазон измеренных значений Y (столбец C) и диапазон рассчитанных значений Y (столбец D).

    4. Сумму разностей квадратов рассчитали – теперь идем во вкладку «Данные» и выбираем «Поиск решения».

    5. В появившемся меню в качестве изменяемой ячейки выбираем ячейку A1 (та, что с коэффициентом k).

    6. В качестве целевой выбираем ячейку A2 и задаем условие «установить равной минимальному значению». Помним, что это ячейка, где у нас производится расчёт суммы квадратов разностей расчетного и измеренного значений, и сумма эта должна быть минимальной. Нажимаем «выполнить».

    7. Коэффициент k подобран. Теперь можно убедиться, что рассчитанные значения теперь очень близки к измеренным.

    Вообще, конечно, для аппроксимации экспериментальных данных в Excel существуют специальные инструменты, которые позволяют осуществлять описание данных с помощью линейной, экспоненциальной, степенной и полиномиальной функцией, поэтому часто можно обойтись и без надстройки «поиск решения». Обо всех этих способах апппроксимации я рассказывал в своем бесплатном курсе по Excel: «10 инструментов Excel для быстрого анализа данных», так что если интересно, скачайте — посмотрите. А вот когда дело касается какой-нибудь экзотической функции с одним неизвестным коэффициентом или задач оптимизации, то здесь надстройка «поиск решения» как нельзя кстати.

    Надстройку «поиск решения» можно использовать и для других задач, главное — понять суть: есть ячейка, где мы подбираем значение, а есть целевая ячейка, в которой задано условие для подбора неизвестного параметра.
    Вот и все! В следующей статье расскажу сказку про отпуск, так что, чтобы не проворонить выход статьи, подписывайтесь на обновления блога.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Применение метода наименьших квадратов в Excel

    С помощью метода нахождения наименьших квадратов в таблице Эксель можно составить линейное уравнение, которое бы принадлежало двум наборам чисел. Применяется этот метод, чтобы сократить к минимуму возможность появления квадратичной ошибки. И в этой статье мы рассмотрим, какие инструменты Microsoft Excel позволяют провести данную процедуру.

    Использование метода в Экселе

    Способ нахождения наименьших квадратов исходит из описания первого числа от второго. Так же он используется для некоторого прогнозирования.

    Включение надстройки «Поиск решения»

    Для начала нам необходимо включить данную функцию в нашем Excel, которая по стандарту не активирована.

    Поэтому переключаемся в раздел «Файл«.

    В левом списке находим «Параметры» и нажимаем на них.

    В появившемся окне кликаем по «Настройки«, которые находятся внизу левого списка.

    В этом же окне только уже в самом низу в разделе «Управление» параметр устанавливаем на «Надстройки Excel«, после чего кликаем по «Перейти. «.

    Теперь в окне «Надстройки» ставим крести в пункте «Поиск решений«. После кликаем на «ОК«.

    Готово. Мы включили необходимую функцию в Excel, которая теперь позволит нам воспользоваться методом наименьших квадратов.

    Воспользуемся нашим методом на практике. Допустим, что есть 2 ряда чисел x и y таких, как это показано на скриншоте.

    Эту взаимозависимость можно описать следующей функцией.

    По условию мы знаем, что начальные значения x и y равны .

    Из этого выходит обычная зависимость y=nx.

    Теперь следует найти минимальную сумму квадратов разности.

    Давайте посмотрим, как здесь можно применить данный нам метод.

    В столбце перед столбиком х поставьте 1. Назовем её n и значить она будет приближенное значение первого параметра коэффициента n.

    Создаем новый столбик справа от y и называем его nx. В первую строчку этого столбика записываем форму умножения n на первую ячейку в столбике x так, как это показано на скриншоте. После нажимаем на «Enter«.

    Переносим эту формулу на все остальные ячейки в столбике nx с помощью маркера заполнения.

    Теперь выбираем произвольную ячейку и записываем туда сумму разностей квадратов параметров x и nx. Сделаем это через мастера функций. Поэтому нажимаем на соответствующую кнопку, находящуюся слева от поля значений.

    Читайте также  Программа Microsoft Excel: прибавление процента к числу

    В появившемся окне находим строку «СУММКВРАЗН» и нажимаем на неё. После кликаем по кнопке «ОК«.

    Теперь у нас должно появится окно аргументов. В верхнем разделе «Массив_x» записываем диапазон ячеек y, а в «Массив_y» диапазон ячеек nx. Теперь вновь кликаем по «ОК«.

    Переключаемся в раздел «Данные«. Там справа находим кнопку «Поиск решений«. Она должна находиться в меню «Анализ«. Теперь кликаем по ней.

    Откроется окошко, где можно настроить параметры поиска решений. В строчке «Оптимизировать целевую функцию» заносим ссылку на ячейку с формулой «СУММКВРАЗН«. В «До» указываем значение «Минимум«. И в следующей строчке «Изменяя ячейки» надо записать ячейку значения столбика n. После этого кликаем по «Найти решение«.

    Общее решение запишется в ячейку значения n. Это и будет готовым ответом, то есть наименьшим квадратом функции. В случае, если вы согласны с результатом, то кликните по «ОК«.

    Теперь вы научились применять метод МНК и даже опробовали его на конкретном примере. Процедура не выглядит сложной. Если действовать по нашей инструкции, то можно с легкостью добиться желаемого результата в Microsoft Excel. А мы лишь надеемся, что наша статья была вам полезной.