Метод скользящей средней в Microsoft Excel

Скользящее среднее в Excel

Здравствуйте. Скользящая средняя (по-английски – moving average) активно используется в трейдинге для определения трендов, точек входа в рынок и выхода из него, и т.д. Однако, этот метод применяют и в оценке бизнес-процессов. Он позволяет отсеять факторы случайности и оценить реальную динамику процессов.

Суть в скользящего среднего в том, что для каждого периода (например, месяца) рассчитывается некий средний показатель, который учитывает предыдущие периоды и отчетный. Количество периодов, которые участвуют в расчете – называют интервалом сглаживания. Чем больше интервал сглаживания, тем более плавный результат мы получим, но будет увеличиваться отставание тренда от реальности. Чуть позже мы увидим это на примерах.

В этой статье я опишу три популярнейших способа реализации Moving Average: простое скользящее среднее, экспоненциальное и взвешенное

Простая скользящая средняя величина

Это элементарный способ, основанный на расчете среднего арифметического значения. Требуется выбрать оптимальный интервал сглаживания и для каждого периода рассчитать среднее значение для количества периодов, равных этому интервалу.

Нет единого стандарта определения интервала. Я определяю его визуально перебором, когда получаю нужное мне качество фильтрации колебаний.

Пример. 15 месяцев назад мы ввели на рынок новый продукт. Сейчас имеем данные о ежемесячных продажах.

Вы хотите визуально оценить динамику вхождения товара в рынок. Вычислим для каждого периода среднее значение. Для интервала в 3 периода расчет будет таким:

И вот каким получится сглаженный график:

Видите, мы получили некую гладкую линию, которая «менее охотно колеблется» и больше похожа на динамику спроса. Давайте так же построим кривые для периодов сглаживания 2 и 4 мес.

Имеем три кривые:

  1. Красная – шаг в 2 месяца;
  2. Зеленая – в 3 месяца
  3. Фиолетовая – 4 месяца

Легко заметить, что фиолетовая линия – наиболее гладкая и больше похожа на тренд. Однако, она медленнее реагирует на изменение продаж, что может вызывать вашу запоздалую реакцию.

Экспоненциальное скользящее среднее

Такой метод – это частный случай взвешенной скользящей средней. Его идея состоит в том, чтобы давать различный вес каждому периоду внутри выбранного интервала. Формула имеет вид:

α – весовой коэффициент, характеризующий скорость старения данных прошлых периодов

Pt – значение исследуемой величины в поточном интервале

EMAt-1 – величина экспоненциального скользящего среднего в предыдущий период времени.

Поскольку экспоненциальное среднее в каждом периоде зависит от такого же показателя в предыдущем, для первого отчетного периода вычисляют простую скользящую.

Весовой коэффициент рассчитывают так, чтобы статистическая ошибка вычислений была минимальной. Но я на практике использую упрощенный вариант, подсмотренный на сайте allfi.biz:

N – интервал сглаживания

Теперь для нашего примера построим экспоненциальную скользящую с интервалом в 3 месяца:

График получится таким:

Я редко использую этот подход, т.к. считаю его слишком чувствительным для моих задач. Если же вам он подходит – пользуйтесь.

Взвешенное скользящее среднее

Самым популярным вариантом взвешенной скользящей считают линейно-взвешенное. На первый взгляд, его формула может показаться сложной:

n – интервал сглаживания,

Pti – значение исследуемой величины в период t-i

Формула достаточно простая, хотя и громоздкая. В числителе – сумма произведений величин продаж на каждом интервале и весового коэффициента для данного периода. Чем старше период, тем ниже коэффициент. В знаменателе – арифметическая прогрессия числа n.

Например, при интервале сглаживания в 3 месяца, формула для третьего периода будет такой:

Вот расчет в Экселе взвешенного скользящего согласно этой формулы:

Диаграмма для периодов 2, 3 и 4 месяца – такая:

Мы рассмотрели три наиболее популярных способа. Заметьте, все они легко реализуются. Теперь давайте посмотрим, как будут выглядеть на одной диаграмме кривые, построенные с помощью этих способов:

Красная линия – простая скользящая, зеленая линия – экспоненциальная – фиолетовая – взвешенная.

Обратите внимание, взвешенная и простая – почти идентичны по форме сглаживания, однако взвешенная кривая менее инерционная и быстрее реагирует на изменения тренда. Поэтому, последним способом я пользуюсь чаще всего. Когда это уместно.

На этом всё, спасибо, что прочли статью и поделились с друзьями. Жду ваших вопросов и комментариев!

Метод скользящей средней в Excel (Эксель)

Скользящая средняя представляет собой статическую функцию, которая дает возможность с легкостью получать результаты по различным задачам. К примеру, задачи по получению прогноза.

Скользящая средняя позволяет изменять абсолютные динамические значения целого ряда ячеек на средние арифметические, используя сглаживание данных. Ее часто применяют в подсчетах на экономических биржах, в торговли и других сферах.
Как его применять в Excel — давайте разберем все по этапам.

Данный метод в Excel применяется через использование функции пакета анализа и непосредственно через саму встроенную функцию, которая получила название «СРЗНАЧ».

Рассмотрим первый способ использования метода скользящей средней через пакет анализа:

1. Пакета анализа в стандартном наборе функций нет, поэтому его необходимо включить. Делается это через параметры документа – «Файл» — «Параметры» — «Надстройки». Внизу диалогового окна есть вкладка «Надстройки». Именно она нам и нужна.

Включаем «Пакет анализа» и сохраняемся. Весь функциональный добавился в «Данные» и полностью готов к использованию.

3. В ранее добавленном функционале «Анализ данных» на рабочей панели с параметров надстроек документа, выбираем искомую «Скользящую среднюю» функцию и нажимаем «Ок».

4. В появившемся диалоговом окне заполним все значения. «Входной интервал» — все наши показатели за 11 месяцев без искомой ячейки. «Интервал» — показатель сглаживания, касаемо наших исходных данных, установим «3». «Выходной интервал» — ячейки, куда будут выводиться полученные данные методом скользящей средней. Включаем «Стандартные погрешности» и получаем все искомые значения.

5. Для получения более верного результата выполним повторное сглаживание с интервалом в «2» единицы. Укажем новый «Выходной интервал» и получаем новые данные.

6. На основе новых полученных данных можно сделать прогноз показатель на искомый месяц путем расчета метода скользящей средней за последний период. Основываемся на том, что чем меньше показатель стандартной погрешности, тем точнее данные.


Рассмотрим второй способ — функцию СРЗНАЧ:

1. Если пакет анализа делает практически все операции автоматизированными, то использование функции СРЗНАЧ требует применения нескольких стандартных функций Excel. Используем те же исходные данные по 11 месяцам. Вставим функцию.

2. В диалоговом окне Мастера функций перейдем во вкладку «Статистические» и выберем нашу искомую функцию «СРЗНАЧ».

3. Функция «СРЗНАЧ» имеет очень простой синтаксис – «=СРЗНАЧ(число1;число2;число3;. ). Укажем в аргументе «число 1» диапазон за «Январь» и «Февраль».

4. Рассчитаем показатель для оставшихся периодов времени путем протягивания маркера заполнения формулы по столбцу вниз.

5. Проведем эту же операцию, но с разницей в период за 3 месяца.

6. Но какие данные в нашем случае верны, на основе двух месяцев или трех? Для получения правильного ответа применим расчет абсолютного отклонения, среднего квадратического и еще пары других показателей. За абсолютное отклонение отвечает функция «ABS».

Читайте также  Функция автозамены в Microsoft Excel

В диалоговом окне функции указываем разность между доходом и скользящей средней за два месяца.

7. Маркером заполнения заполним столбец и рассчитаем «СРЗАНЧ» за все время.

8. Проведем аналогичную операцию для поиска абсолютного отклонения и среднего значения за период в три месяца.

9. Осталось еще пару шагов. Для начала рассчитаем относительное отклонение по двум и трем месяцам путем функции поиска абсолютного значения разделения найденного отклонения на имеющиеся исходные данные, а также найдем среднее значение полученных значений.

Все данные представим в процентах.

10. Для получения конечного результата метода скользящей средней осталось подсчитать среднее квадратическое отклонение также за два и за три месяца.

Наше искомое среднее квадратическое отклонение будет равняться квадратному корню из суммы квадратов разностей исходных данных о выручке и полученных данных методом скользящей средней, разделенной на период времени.

Пропишем нашу функцию «КОРЕНЬ(СУММКВРАЗН(B6:B12;C6:C12)/СЧЁТ(B6:B12))», заполним столбцы маркерами заполнения и найдем среднее значение по полученным данным.

11. Проведем анализ полученных данных и можем с уверенностью сделать вывод – сглаживание по двум месяцам дало наиболее правдивые конечные показатели.

Расчет скользящей средней в Excel и прогнозирование

Практическое моделирование экономических ситуаций подразумевает разработку прогнозов. С помощью средств Excel можно реализовать такие эффективные способы прогнозирования, как: экспоненциальное сглаживание, построение регрессий, скользящее среднее. Рассмотрим подробнее использование метода скользящего среднего.

Использование скользящих средних в Excel

Метод скользящей средней – один из эмпирических методов для сглаживания и прогнозирования временных рядов. Суть: абсолютные значения ряда динамики меняются на средние арифметические значения в определенные интервалы. Выбор интервалов осуществляется способом скольжения: первые уровни постепенно убираются, последующие – включаются. В результате получается сглаженный динамический ряд значений, позволяющий четко проследить тенденцию изменений исследуемого параметра.

Временной ряд – это множество значений X и Y, связанных между собой. Х – интервалы времени, постоянная переменная. Y – характеристика исследуемого явления (цена, например, действующая в определенный период времени), зависимая переменная. С помощью скользящего среднего можно выявить характер изменений значения Y во времени и спрогнозировать данный параметр в будущем. Метод действует тогда, когда для значений четко прослеживается тенденция в динамике.

Например, нужно спрогнозировать продажи на ноябрь. Исследователь выбирает количество предыдущих месяцев для анализа (оптимальное число m членов скользящего среднего). Прогнозом на ноябрь будет среднее значение параметров за m предыдущих месяца.

Задача. Проанализировать выручку предприятия за 11 месяцев и составить прогноз на 12 месяц.

Сформируем сглаженные временные ряды методом скользящего среднего посредством функции СРЗНАЧ. Найдем средние отклонения сглаженных временных рядов от заданного временного ряда.

  1. По значениям исходного временного ряда строим сглаженный временный ряд методом скользящего среднего по данным за 2 предыдущих месяца. Формула скользящей средней в Excel. Используя маркер автозаполнения, копируем формулу на диапазон ячеек С6:С14.
  2. Аналогично строим ряд значений трехмесячного скользящего среднего. Формула:
  3. По такому же принципу формируем ряд значений четырехмесячного скользящего среднего.
  4. Построим график заданного временного ряда и рассчитанные относительно его значений прогнозы по данному методу. На рисунке видно, что линии тренда скользящего среднего сдвинуты относительно линии исходного временного ряда. Это объясняется тем, что рассчитанные значения сглаженных временных рядов запаздывают по сравнению с соответствующими значениями заданного ряда. Ведь расчеты базировались на данных предыдущих наблюдений.
  5. Рассчитаем абсолютные, относительные и средние квадратичные отклонения по сглаженным временным рядам. Абсолютные отклонения:

Средние квадратичные отклонения:

При расчете отклонений брали одинаковое число наблюдений. Это необходимо для того, чтобы провести сравнительный анализ погрешностей.

После сопоставления таблиц с отклонениями стало видно, что для составления прогноза по методу скользящей средней в Excel о тенденции изменения выручки предприятия предпочтительнее модель двухмесячного скользящего среднего. У нее минимальные ошибки прогнозирования (в сравнении с трех- и четырехмесячной).

Прогнозное значение выручки на 12 месяц – 9 430 у.е.

Применение надстройки «Пакет анализа»

Для примера возьмем ту же задачу.

На вкладке «Данные» находим команду «Анализ данных». В открывшемся диалоговом окне выбираем «Скользящее среднее»:

Заполняем. Входной интервал – исходные значения временного ряда. Интервал – число месяцев, включаемое в подсчет скользящего среднего. Так как сначала будем строить сглаженный временной ряд по данным двух предыдущих месяцев, в поле вводим цифру 2. Выходной интервал – диапазон ячеек для выведения полученных результатов.

Установив флажок в поле «Стандартные погрешности», мы автоматически добавляем в таблицу столбец со статистической оценкой погрешности.

Точно так же находим скользящее среднее по трем месяцам. Меняется только интервал (3) и выходной диапазон.

Сравнив стандартные погрешности, убеждаемся в том, что модель двухмесячного скользящего среднего больше подходит для сглаживания и прогнозирования. Она имеет меньшие стандартные погрешности. Прогнозное значение выручки на 12 месяц – 9 430 у.е.

Составлять прогнозы по методу скользящего среднего просто и эффективно. Инструмент точно отражает изменения основных параметров предыдущего периода. Но выйти за пределы известных данных нельзя. Поэтому для долгосрочного прогнозирования применяются другие способы.

Центрированная скользящая средняя в excel. Вычисление скользящего среднего средствами Excel

В бизнесе, как и в любой другой деятельности человек, хочет знать, а что будет дальше. Даже трудно себе представить богатство того счастливца, который с 100% точностью мог бы угадывать будущее. Но, к сожалению (или, же к счастью) дар предвидения встречается крайне редко. НО… стараться хотя бы в общих чертах представить будущую бизнес ситуацию предприниматель просто обязан.

Вначале я хотел написать в одном посте сразу про несколько простых и удобных методик, но пост стал получаться очень большим. И поэтому будет несколько постов посвященных теме прогнозирования. В данном посте мы опишем один из наиболее простых методов прогнозирования с использованием возможностей Excel – метод скользящего среднего.

Чаще всего в практике маркетинговых исследований прогнозируются следующие величины:

  • Объемы продаж
  • Размер и емкость рынка
  • Объемы производства
  • Объемы импорта
  • Динамика цен
  • И проч.

Для прогнозирования, которое мы рассматриваем в данном посте советую придерживаться следующего простого алгоритма:

1. Сбор вторичной информации по проблеме (желательно как количественной, так и качественной). Так, например если Вы прогнозируете размер своего рынка, нужно собрать статистическую информацию по рынку (объемы производства, импорта, динамику цен, объемы продаж и проч.) так и тенденции, проблемы или возможности рынка. Если вы прогнозируете объем продаж, тогда вам нужны данные о продажах за период. Для прогнозирования, чем больше исторических данных вы рассмотрите, тем лучше. Желательно прогнозирование дополнить анализом влияющих на прогнозируемое явление факторов (можно SWOT, PEST анализ или любой другой). Это позволит понимать логику развития, и вы сможете таким образом проверять правдоподобность той или иной модели тренда.

2. Далее желательно проверить количественные данные . Для этого нужно сравнить значения одних и тех же показателей, но полученных из разных источников. Если все сходиться можно «загонять» данные в Excel. Также данные должны соответствовать следующим требованиям:

  • Базовая линия включает в себя результаты наблюдений — начиная с самых ранних и заканчивая последними.
  • Все временные периоды базовой линии имеют одинаковую продолжительность. Не следует смешивать данные, например, за один день со средними трехдневными показателями.
  • Наблюдения фиксируются в один и тот же момент каждого временного периода. Например трафик замеряться должен в одно и то же время.
  • Пропуск данных не допускается. Пропуск даже одного результата наблюдений нежелателен при прогнозировании» поэтому, если в ваших наблюдениях отсутствуют результаты за незначительный отрезок времени, постарайтесь восполнить их хотя бы приблизительными данными.
Читайте также  Восстановление поврежденных файлов Microsoft Excel

3. Проверив данные, можно применять различные методики прогнозирования . Начать я бы хотел с самого простого метода – МЕТОДА СКОЛЬЗЯЩЕГО СРЕДНЕГО

МЕТОД СКОЛЬЗЯЩЕГО СРЕДНЕГО

Метод скользящего среднего применять достаточно несложно, однако он слишком прост для построения точного прогноза. При использовании этого метода прогноз любого периода представляет собой не что иное, как получение среднего показателя по нескольким предыдущим наблюдениям временного ряда. Например, если вы выбрали скользящее среднее за три месяца, прогнозом на май будет среднее значение показателей за февраль, март и апрель. Выбрав в качестве метода прогнозирования скользящее среднее за четыре месяца, вы сможете оценить майский показатель как среднее значение показателей за январь, февраль, март и апрель.

Как правило, прогноз с применением скользящего среднего рассматривается как прогноз на период, непосредственно следующий за периодом наблюдения. Вместе с этим такой прогноз применим, когда исследуемое явление развивается последовательно, т.е. имеются определенные тенденции, и кривая значений не скачет по диаграмме как угорелая.

Чтобы определить, сколько наблюдений желательно включить в скользящее среднее, нужно исходить из предыдущего опыта и имеющейся информации о наборе данных. Необходимо выдерживать равновесие между повышенным откликом скользящего среднего на несколько самых свежих наблюдений и большой изменчивостью этого среднего.

Итак, как это делать в Excel

1. Допустим, что у Вас есть объемы месячных продаж за последние 29 месяцев. И вы хотите определить, какой объем продаж будет в 30 месяце. Но, если честно, вовсе не обязательно при расчете прогнозных значений оперировать 30 историческими значениями, ведь этот метод будет использовать для расчета среднего лишь несколько последних месяцев. Поэтому для расчета достаточно лишь несколько прошлых месяцев.

2. Приводим эту таблицу в вид понятный Excel, т.е. чтобы все значения были в одном ряду.

3. Далее вводим формулу расчета среднего по предыдущим трем (четырем, пяти? как сами выберите) значениям (см. в ). Наиболее удобно все-таки использовать для расчета последние 3 значения, т.к. если учитывать больше, данные будут чересчур усредняться, если меньше – не будут точными.

4. Используя функцию автозаполнения для всех последующих значений вплоть до 30, прогнозного месяца. Таким образом, функция рассчитает прогноз на июнь 2010 г. Согласно прогнозным значениям в июне продажи составят около 408 единиц товара. Но обратите внимание, что если тенденция падения постоянна, как в нашем примере, расчет прогноза по средней будет немного завышенным, или будет как бы «отставать» от реальных значений.

Мы рассмотрели одну из самых простых методик прогнозирования – метод скользящего среднего. В следующих постах мы рассмотрим другие, более точные и сложные методики. Надеюсь, мой пост будет Вам полезен.

Расчет скользящего среднего – это, прежде всего, метод, который позволяет упростить определение и анализ тенденций в развитии динамического ряда на основе сглаживания колебаний измерений по временным интервалам. Эти колебания могут возникать из-за случайных ошибок, которые часто являются побочным эффектом техники отдельных расчетов и измерений или результатом различных временных условий.

Инструмент «Скользящее среднее» можно вызвать в диалоговом окне команды «Анализ данных» из меню «Сервис».

С помощью инструмента скользящей средней я составляю прогноз экономических показателей таблицы 1.1(табл. 3.1).

Таблица 3 .1 ― Оценка тенденции поведения показателей исследуемого динамического ряда методом скользящего среднего

На основании данных таблицы строю график скользящей средней.

Рисунок 3.1 – Скользящее среднее

Общая динамика цепных темпов прироста и скользящее среднее отображено на графике, из которого видно, что показатель скользящего среднего имеет тенденцию к росту, затем к снижению, затем снова к росту, т.е. с каждым месяцем объем товарооборота постоянно изменяется.

Расчет скользящего среднего является быстрым и простым способом краткосрочного прогнозирования экономических показателей. В ряде случаев он выглядит даже эффективнее других методов, основанных на долговременных наблюдениях, поскольку позволяет при необходимости сократить динамический ряд исследуемого показателя до такого количества его членов, которое будет отражать только последнюю тенденцию его развития. Тем самым прогноз не будет искажаться за счет имевших место ранее выбросов, изломов и прочего и намного точнее отразит возможное значение прогнозируемого показателя в ближайшей перспективе.

Составление линейных прогнозов средствами Excel

По типу функциональных зависимостей экзогенных переменных модели тренда могут быть линейными и нелинейными. Сложность экономических процессов и свойство открытости экономических систем обуславливают в большинстве случаев нелинейный характер развития экономических показателей. Однако построение линейных моделей является гораздо менее трудоемкой и с технической и с математической точек зрения процедурой. Поэтому на практике нередко допускают частичное преобразование нелинейных процессов (при условии, что предварительно проведенный графический анализ данных позволяет это сделать), и моделирование поведения исследуемого показателя сводится к составлению и оценке линейного уравнения его динамики.

Использование функции линейн для создания модели тренда

Функция рабочего листа ЛИНЕЙН помогает определить характер линейной связи между результатами наблюдений и временем их фиксации и дать ей математическое описание, наилучшим образом аппроксимирующее исходные данные. Для построения модели она использует уравнение вида y=mx+b, гдеy– исследуемый показатель;x=t– временной тренд;b,m– параметры уравнения, характеризующие соответственноy-пересечение и наклон линии тренда. Расчет параметров модели ЛИНЕЙН производят на основе метода наименьших квадратов.

Вызвать функцию ЛИНЕЙН можно в диалоговом окне «Мастер функций» (категория «Статистические»), расположенном на панели инструментов «Стандартные».

Таблица 3.2 ― Расчет и оценка линейной модели тренда с помощью функции ЛИНЕЙН

Цель работы : Приобрести навыки решения задач частотного анализа с помощью функции рабочего листа анализа MS Excel .

Краткая теория

При анализе экономических показателей часто возникает вопрос, как часто встречаются показатели в заданных интервалах значений.

Функция ЧАСТОТА рабочего листа анализа MS Excel относится к категории статистических функций и возвращает распределение частот в виде вертикального массива. Для данного множества значений и заданного множества карманов (интервалов) частотное распределение подсчитывает, сколько значений попадает в каждый интервал.

В качестве массива данных может быть одномерный или двумерный массив (например, A 4: D 15).

Синтаксис: ЧАСТОТА (массив_данных; массив_карманов)

Для частотного анализа можно использовать команду Сервис/Анализ данных. Анализ данных является одной из надстроек Excel . Если в меню отсутствует эта команда, то следует выполнить команду Сервис/ Надстройки и установить соответствующий флажок в окне Надстройки .

С помощью функции Частота для выборки множества сумм заказов () введите в диапазон подсчитайте, сколько значений попадают в заданные интервалы значений. Например, от 0 до 1000, от 1001 до 1500, от 1501 до 2000, от 2001 до 2500, свыше 2500.

Метод скользящей средней в Microsoft Excel

Среднее скользящее значение относится к категории аналитических инструментов, которые, как принято говорить, «следуют за тенденцией». Его назначение состоит в том, чтобы позволить определить время начала новой тенденции, а также предупредить о ее завершении или повороте. Методы скользящего среднего предназначены для отслеживания тенденций непосредственно в процессе их развития, их можно рассматривать как искривленные линии тренда. Однако методы скользящего среднего не предназначены для прогнозирования движений на рынке в том смысле, в котором это позволяет делать графический анализ, поскольку они всегда следуют за динамикой рынка, а не опережают ее. Иначе говоря, эти показатели, например, не прогнозируют динамику цен, а только реагируют на нее. Они всегда следуют за движениями цен на рынке и сигнализируют о начале новой тенденции, но только после того, как она появилась.

Читайте также  Увеличение таблицы в Microsoft Excel

Построение скользящего среднего представляет собой специальный метод сглаживания показателей. Действительно, при усреднении ценовых показателей их кривая заметно сглаживается и наблюдать тенденцию развития рынка становится намного проще. Однако уже по самой своей природе скользящее среднее как бы отстает от динамики рынка. Краткосрочное скользящее среднее точнее передает движение цен, чем более продолжительное, т.е. вычисленное для более длинного интервала. Применение краткосрочного скользящего среднего позволяет сократить отставание во времени, однако полностью устранить его при использовании любого метода скользящих средних невозможно.

Простое скользящее среднее, определяемое как среднее арифметическое значение, вычисляется по следующей формуле, при условии что m — нечетное число:

(11.3)

где у, — фактическое значение /-го уровня; m — число уровней, входящих в интервал сглаживания — текущий уровень ряда динамики; i — порядковый номер уровня в интервале сглаживания; р — при нечетном m имеет значение р = (m — 1)/2.

Интервал сглаживания, т.е. число входящих в него уровней m, определяют по следующим правилам. Когда необходимо сгладить незначительные, беспорядочные колебания, интервал сглаживания берут большим, если же требуется сохранить более незначительные колебания и освободиться лишь от периодически повторяющихся выбросов — интервал сглаживания обычно уменьшают.

Метод простого скользящего среднего используется обычно в тех случаях, когда график временного ряда представляет собой прямую линию, поскольку при этом динамика исследуемого явления не искажается.

В том случае, когда тренд ряда имеет явно нелинейный характер и желательно сохранить незначительные колебания в динамике значений, этот метод не используется, так как его применение может привести к значительным искажениям исследуемого процесса. В таких случаях используется взвешенное скользящее среднее или методы экспоненциального сглаживания.

Практика показывает, что метод простого скользящего среднего позволяет выработать объективную стратегию и четко определенные правила, например, в сфере торговли. Именно поэтому данный метод положен в основу многих компьютерных систем для торговых организаций. Как же можно использовать метод скользящего среднего? Наиболее распространенные способы применения скользящего среднего таковы.

1. Сопоставление значения текущей цены со скользящим средним, используемым в этом случае как индикатор тенденции. Так, если цены находятся выше 65-дневного скользящего среднего, то на рынке имеется промежуточная (краткосрочная) восходящая тенденция. В случае более долгосрочной тенденции цены должны быть выше 40-недельного скользящего среднего.

2. Использование скользящего среднего как уровня поддержки или сопротивления. Закрытие цен выше данного скользящего среднего служит «бычьим» сигналом, закрытие ниже его — «медвежьим».

3. Отслеживание полосы скользящего среднего (другое часто используемое название — конверт). Эта полоса ограничивается двумя параллельными линиями, которые располагаются на определенную процентную величину выше и ниже кривой скользящего среднего. Эти границы могут служить индикаторами уровня поддержки или сопротивления соответственно.

4. Наблюдение за направлением наклона кривой скользящего среднего. Так, если после длительного подъема она выравнивается или поворачивает вниз, это может быть «медвежьим» сигналом.

5. Еще один простой метод наблюдения заключается в построении линий тренда по кривой скользящего среднего. Также иногда может быть целесообразно использование комбинации из двух скользящих средних.

Microsoft Excel располагает функцией Скользящее среднее (Moving Average), которая обычно используется для сглаживания уровней эмпирического временного ряда на основе метода простого скользящего среднего. Для вызова этой функции необходимо выбрать команду меню Tools^Data Analysis (Сервис1*Анализ данных). На экране раскроется окно Data Analysis, в котором следует выбрать значение Moving Average. В результате на экран будет выведено диалоговое окно Moving Average, представленное на рис. 11.1.

В диалоговом окне Скользящее среднее задаются следующие параметры.

1. Input Range (Входные данные) — в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels in First Row (Метки в первой строке) — данный флажок опции устанавливается в том случае, если первая строка/столбец входного диапазона содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Interval (Интервал) — в это поле вводится число уровней m, входящих в интервал сглаживания. По умолчанию v = 3.

4. Output options (Параметры вывода) — в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего нужно установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего необходимо установить флажок опции Standart Errors (Стандартные погрешности).

Рассмотрим конкретный пример. Допустим, за указанный период (1999-2002 гг.) необходимо выявить основную тенденцию изменения фактического объема выпуска продукции и характер сезонных колебаний этого показателя. Данные для примера представлены на рис. 11.2. На рис. 11.3 отображены вычисленные с помощью функции Moving Average (Скользящее среднее) значения сглаженных уровней и значения m=3.

Ha puc. 11.4 rpaфически представлены фактические и прогнозируемые значения анализируемого ряда.

Рассчитанные сглаженные уровни не только дают представление об общей тенденции поведения изучаемого ряда, но и может быть также использованы для вычисления индексов сезонности IS , совокупность которых характеризует сезонную кривую исследуемого процесса. Средние индексы сезонности определяются по формуле

где — исходные уровни ряда, — сглаженные уровни ряда, u — число одноименных периодов.

На рис. 11.3 представлены вычисленные значения . Для получения средних индексов сезонности IX выполняется усреднение вычисленных значений , по одноименным кварталам.

Вычисленные показатели являются средними индексами сезонных колебаний объема выпуска продукции по кварталам.